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Abstract – Simultaneous Tracking and identification 
(STID) is impacted by sensor and target dynamics 
especially in move-stop-move type scenarios. For most 
scenarios, both moving and stationary targets can be 
processed into 1-D High-Range Resolution (HRR) Radar 
profiles which contain enough feature information to 
discern one target from another to help maintain track or 
to identify the vehicle. To meet mission objectives, 
different decision-level and feature-level classifiers can be 
designed to achieve performance requirements such as the 
sensitivity of the number of features for a given location 
accuracy, identification confidence, timeliness (revisit rate 
and track length), and throughput of the number of targets 
tracked. For robust STID evaluation, repeatable 
scenarios, metrics, and data support is recommended for 
comparisons.  This paper compares the ATR performance 
of a baseline single-look algorithm to the performance of 
decision level and feature level fusion ATR algorithms 
through multilook assessments to assess relative fusion 
performance gains. 

Keywords: ATR, Information Fusion, HRR, eigen-value, 
SVD, Fusion Evaluation 

1 Introduction 
For robust simultaneous tracking and identification 

(STID) [1, 2] the determination of target type, dynamics, 
and intent is important. Radar is all-weather and distant 
invariant, eliminating the need for classifier changes over 
environmental conditions.[3] For this reason, many 
surveillance systems incorporate High Range Resolution 
(HRR) radar and synthetic aperture radar (SAR) modes to 
be able to capture moving and stationary targets.  Feature-, 
signature-, and categorical-aided tracking and automatic 
target recognition (ATR) applications have benefited from 
HRR radar modes. Determining the quality of information 
can assist in joint tracking and ID [4] or joint tracking and 
classification [5, 6] through analysis by Bayes, Dempster-
Shafer, or DSmT methods [7]. 

For robust STID methods, intelligent sensor 
management optimizes over the parameters. In search 
mode, it would be desirable to stay far way to find targets 
(track initiation).[8, 9] As targets are acquired, the tracker 
operates in a track maintenance mode to follow targets; 
however, to maintain track when the targets are closely 
spaced such as at road intersections requires feature 
analysis to identify the targets. HRR radar provides the 
dynamic processing analysis for both detection for 

tracking and signal features (range, angle, aspect, and 
peak amplitudes) for automatic target recognition (ATR).  

ATR consists of assessing the data, designing a 
classifier based on trained data, comparing the trained data 
to measured data through a classifier, and testing the 
results. Typically, ATR, or information fusion object 
assessment, developers tailor their algorithms to a specific 
data set.  Having designed the initial algorithm, they have 
a point solution. Further studies and analysis are required 
to robustly determine the capability of different classifiers, 
performance of classifiers over different operating 
conditions, and the sensitivities and bounds of 
performance. To enable the further analysis, developers 
should consider developing a Challenge Problem Set 
(CPS). A CPS affording information fusion evaluation 
includes real and synthetic data, baseline algorithms, truth 
data for sensitivity analysis, defined metrics, and stated 
experiments or challenges. 

 Some notable data sets include the Tracking 
Benchmark problem [10], the Moving and Stationary 
Automatic Target Recognition (MSTAR) data set [11] that 
provides SAR collections, and the ImageFusion.org site 
that contains electro-optical (EO) and Infrared (IR) data. 
[12, 13] To complement these methods, and further 
explore STID, there is a need for HRR data sets. 
Compiling a HRR data set would enable robust 
explorations in information fusion object assessment over 
multi-look position and feature algorithm analysis and 
comparisons.   

Multi-look classifier development typically includes 
training on the location and peak features of a 1-D HRR 
signature. [14] Classifiers have been developed for 
correlation [15], Bayes and Dempster Shafer information 
fusion approaches [16], entropy and Information theory 
analysis [17], and Neuro-Fuzzy methods [18]. The 
classifier results have been used for tracking [19] and 
multi-look HRR[20]. Other approaches include eigen-
value template matching [21], Eigen-extended maximum 
average correlation (EEMACH) filters [22] and likelihood 
methods accounting for Rician, Amplitude, specular, and 
diffuse, Cisoid scattering[23] .   
 The eigen-template matching offers a robust approach to 
ATR because of the ability to determine the log-likelihood 
analysis in consideration of the robust nature of the 
system.  Eigen-templates have been used for 2D ATR 
problems using Electro-optical [24], SAR, [25, 26], and 
Forward-looking IR (FLIR) analysis [27, 28]. In each of 
these methods, the Eigen-template matching provides a 
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stable analysis for a single look. The eigenvector approach 
was then adapted and refined by Shaw [29, 30, 31] and 
others [23] for 1-D template formation using HRR profile 
data. To increase robustness, we seek to develop a multi-
look  approach utilizing the eigen-template feature 
analysis [32], summarized by a classifier confusion-matrix 
and combine them for enhanced HRR target identification. 
 This paper develops a multi-look identification for HRR 
using decision and feature-level fusion approaches with  
the Baseline Automated Recognition of Targets (BART) 
technique to distinguish between multiple moving targets 
in clutter. Section 2 discusses the motivation, purpose, and 
problem methodology. Section 3 introduces the HRR 
identification methodology using the eigen-template 
approach.  Section 4 discusses the fusion of the classifiers.  
Section 5 presents results and Section 6 draws 
conclusions. 

2 HRR Data Processing 
Focused one dimensional HRR profiles of moving 

targets may be generated with enhanced target-to-clutter 
ratios via Doppler filtering or other methods. One such 
procedure first chips the moving target from the motion 
compensated video phase history data and aligns the target 
chips for clutter suppression and focusing.  This results in 
a two dimensional range-Doppler chip that is masked 
using binary morphology to determine the mean clutter 
level, target length, and target edges in the chip. The 
range-Doppler chip is then cropped about the Doppler 
extent of the target mask before computing the mean of all 
sub-aperture images. The maximum scatters from each 
range bin are kept to form the 1-D HRR profile. 

Stationary targets from SAR imagery may also be 
formed into 1-D HRR profiles using a similar process.  
For targets in SAR imagery, constant-false alarm rate 
(CFAR) detection is performed first, followed by target 
mask formation using binary morphology. The formation 
process crops around the target mask and computes the 
mean of all sub-aperture images, keeping the maximum 
scatters from each range bin to form the stationary HRR 
profile.  Shown in Figure 1 is the general profile 
formation process flow.   
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Figure 1.  1-D HRR Profile formation Process 
 
Recent research [33] has shown that HRR profiles 

formed from SAR imagery of stationary targets have 
comparable features to profiles of the same moving target 

at corresponding collection geometries as shown in  
Figure 2. 
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Figure 2. Comparison of moving / stationary 1-D HRR profiles 
 
3 Baseline ATR Algorithm 

Pattern recognition algorithms applied to Automatic 
target recognition (ATR) problems are typically trained on 
a group of desired objects in a library to gain a statistical 
representation of each objects’ features. The algorithm 
then aligns input signatures to the library templates (or 
models [34]) and determines the best correlation value for 
the aligned features.  Algorithms often apply a threshold 
to the best score to reject questionable objects before 
identification or class label decisions are made.  Although 
this process seems straight forward, misidentification or 
rejection of an input object as a viable target occurs 
because of conditions such as the target being obscured 
from the sensor, target adjacent to another object, and 
target transition from moving to stationary and back to a 
moving state in a traffic scenario, that unexpectedly alters 
the features used in the identification process. 

The stationary target signatures of the public Moving 
and Stationary TArget Recognition (MSTAR) data set 
have been extensively studied and creatively applied to the 
synthetic aperture radar (SAR) ATR problem.  A number 
of techniques have been explored by Novak[25-26] and 
others in the development of 2-D SAR image 
classification algorithms which utilized the MSTAR data. 
The importance and impact of extended operating 
conditions to ATR performance were assessed in a 
number of papers using this data set [17,35,36]. The 
MSTAR data was even processed into 1-D HRR profiles 
to evaluate potential HRR ATR solutions [1, 37, 38, 39]. 

The Baseline Automated Recognition of Targets 
(BART) algorithm is based on the eigen template 
techniques described extensively in the literature. In 
principal, templates are formed from the dominant 
eigenvector and the algorithm is trained on features found 
in the HRR profile data, leading to the creation of a 
library.  The vehicle features of the templates in the library 
are then compared to the features found in the test 
signatures, ultimately resulting in an ATR decision. 
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3.1 Template Formation 

The Power Transform operation defined as, Y = X v was 
used to map non-Gaussian HRR data to have Gaussian-
like density.  In [21] it had been demonstrated that 
application of power transform on noiseless detected HRR 
data tended to enhance HRR performance considerably.  
However, the BART algorithm used in this work does not 
apply the power transform operation because HRR data 
collected under real world conditions can be potentially 
noisy causing the power transform to enhance clutter in 
the HRR profile as well as the target energy. The noise 
amplification can be mitigated by preprocessing the HRR 
profiles and clipping any clutter present (noiseless) before 
applying the power transform.  But, the BART algorithm 
was designed to use the HRR profiles without any 
knowledge of what preprocessing was or was not applied 
to the data prior to the algorithm.  The Singular Value 
Decomposition (SVD) operation used in template 
formation projects the information contained in the 
detected HRR profile matrix onto orthogonal basis spaces, 
known as Karhunen-Loeve Transformation or Principal 
Component Analysis. 

The HRR profile training data is first sorted in azimuth 
and then organized into a range-angle map.  The training 
data is then windowed in aspect to the desired template 
coverage size. For the templates formed to produce the 
results presented in this paper, a training data window of 
5° in aspect and 1° in depression was used because of the 
generally sparse nature of the HRR data set and to avoid 
outliers potentially biasing templates. A statistical 
representation of the block of training data is determined 
by using SVD to decompose the normalized range-angle 
maps of HRR profiles for each template into orthogonal 
basis spaces. The three resulting matrices from the 
decomposition can be written as shown in Eq. 1 below 
where the range and angle subspaces are decoupled into 
left and right eigenvectors.   

X  = U Σ V 
T
 (1) 

In Eq. 1 the range-angle map, X, is an l × m sized matrix 
written as the product of the orthogonal basis spaces 
where the l × l sized left singular vector, U, contains the 
range subspace. Σ is an l × m sized diagonal matrix of 
nonzero decreasing singular values. The m × m sized right 
singular vector, V, contains the angle subspace which is 
discarded in the template formation process.  The first 
singular value in Σ is the largest eigen value and 
corresponds to the first range-space eigenvector in U 
shown by Shaw [21,29-31] to contain a significant portion 
of the range profile feature energy. The dominant range-
space eigenvectors are used as matching templates in the 
BART algorithm. 

These templates were stored at a reported average 
template azimuth for each window of data used.  For 
example all of the training data between 0° and 5° was 
used to form the template at 2.5°, and the training data 

between 5.01° and 10° was used to form the template at 
7.5°. The process is repeated until all templates are formed 
for each object in the library. 

3.2 Threshold Formation 
Following template formation the threshold statistics are 

determined by first normalizing the training data. The 
training data is then centroid aligned to the features in the 
templates. The centroid aligning is accomplished for each 
HRR profile by circularly shifting an integer number of 
range bins to the left (negative shift). The correlation 
score for the shifted profile to that of the template is 
computed.  Then shift the profile one range bin to the right 
and recompute the correlation score, keeping the 
maximum correlation and optimal range bin shift value. 
The process is repeated for all ± integer range bin shifts. A 
typical integer shift value of ±10 is a good starting point.  
Once the optimal shifts are found for all of the training 
data in a template window, the mean and standard 
deviation of the maximum correlations are computed for 
the template. The process of testing the training HRR 
profile data against its own template is repeated for each 
template formed earlier.  The results are used to compute a 
threshold for target rejection which is represented by  

 T = sfx *+  (2) 

Where T is the rejection threshold, x is the mean of the 
maximum correlations for a given template aspect 
window, s is the standard deviation of the maximum 
correlations of a given template window, and f is the scale 
factor which adjusts the operating point along the receiver 
operator curve (ROC).  A target rejection threshold is 
computed for each library object and every template 
aspect angle using Eq. 2. The results presented later in this 
paper are for a factor, f = 0.5. 

3.3 Decision Process 
At this point, the training process of the BART 

algorithm is complete with the creation of a vehicle library 
containing training statistics and templates that may then 
be used in the identification of ground vehicles. Target 
recognition begins with the normalization of the test 
signature followed by choosing the template closest in 
azimuth to the estimated test profile aspect angle.  The test 
data is then centroid aligned to the features of the chosen 
template. This is achieved by circularly shifting an integer 
number of test profile range bins to the left and computing 
the correlation score for the shifted profile to that of the 
template. Then the test data is shifted a range bin to the 
right and the correlation score is determined again.  After 
shifting through all ± integer range bin shifts, the 
maximum score is kept for the test profile and selected 
template. The process is then repeated using the same 
vehicle profile with every object in the library, resulting in 
a vector of best scores. Now the maximum score in the 
vector is found and the corresponding library threshold is 
computed. The threshold is applied by comparing the 
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maximum score to the threshold with scores less than the 
threshold being labeled an unknown and all other scores 
resulting in the test profile being labeled as the library 
object corresponding to the selected threshold. The 
process is repeated for all test signatures and the results 
are tracked so that a decision ATR confusion matrix can 
be compiled as shown in the results (Sect. 5). 

3.4 Metric Presentation  
The Baseline Automated Recognition of Targets 

(BART) algorithm of the HRR ATR Challenge Problem 
Set utilized the eigen-value HRR approach as a baseline 
method, although other methods could be incorporated. 
The likelihood vectors were compiled into a confusion 
matrix (CM).  Thus, each single look provided a full 
analysis of the classifier, C, for all target comparisons. 
The likelihood vectors of the confusion matrix allowed for 
a more thorough analysis with such performance criteria 
as detection and false alarm probabilities, respectively PD 
and PFA.  The confusion matrix lists a sets of likelihood 
values with the real targets as the rows {T1, …, TN}, and 
the testable hypothesis as the columns {T1, …, TN, other}, 
 

 CM    =   
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤  T1  …  TN  other

 T1  …   :  
  …   :  

 TN    …  :

 (3) 

 

Representing the likelihood values in the confusion matrix 
as:  

 CM    =   

⎣
⎢
⎡

⎦
⎥
⎤A  B  …  B  O

 C  D  …  D  O
 :  :  …  :  :
 C  D  …  D  O

 (4) 

 

From the confusion matrix, and a defined target-to-
confusion ratio as m, a set of metrics can be identified to 
support analysis including: 

   P Declaration    =  
A

 A + B  (5)  

P FalseAlarm     =  
C

 C + D  (6) 

P Correct Classification    =  
 m • P D

  (m • P D) +  P FA
 (7) 

 

4 Multi-Look ID Fusion 
The ability to perform track and identity fusion requires 

sensor-processed classifications from different levels.  
Multi-target data association algorithms that accurately 
track targets in the presence of clutter assume that the 
detected targets can be tracked from a sequence of center-
of-gravity and pose positional data.  Detected 
classification can effectively discern the target for a given 
scenario using experience of target movement, training, or 
predicted information.  For example, identifying a target 
requires the correct orientation and speed estimate. Two 
targets of the same type may be crossing in space, but 

since they can not occupy the same location, they would 
each have a different orientation relative to a sensor. By 
exploiting the orientation, velocity, and multi-resolution 
feature information, each target can be assessed for the 
correct track-ID association. 

The capability of a sensor to track and identify targets 
simultaneously includes finding the target center for 
tracking, determining the target pose, and searching the 
neighboring characteristics for discerning salient features 
for association to a specific target type. By partitioning 
kinematic and target feature data, associations at different 
levels can be used for either coarse(tracking) or fine 
(recognition) target analysis.  For example, features [40] 
can be used to identify targets with a level of uncertainty; 
however, if many features are fused, the identity improves 
and helps eliminate clutter. The tracker must use the 
available features to discern an object (identify a target) 
which is a subset of Automatic Target Recognition (ATR). 
Certain features are inherently more useful in recognizing 
a target than others. For instance, identifying a large car 
versus a small car would result from an analysis of the 
length-to-width ratio but, obtaining these features is a 
function of sensor resolution. Additionally, decoupling 
information can be used for a single-platform observer to 
fuse information from a sequence of sensor data or for a 
multiple-platform scenario in which fusing is performed 
from different geometrical positions.  Further information 
on the development of the STID derivation is found in [1]. 

The problem of track level and ID-level fusion has 
characteristic tradeoffs about which the tracker must 
decide. For close targets, it is useful to keep an accurate 
track on multiple targets. The intelligent processor 
performs target-to-ID association at multiple levels and 
can either track targets at a low resolution or ID targets at 
a higher resolution. By leveraging knowledge about target 
features, fusion algorithms can significantly reduce 
processing time for tracking and identifying targets. For 
separated targets, resources may exist to identify each 
target. Hence, due to a limited set of resources and/or 
processor time, a trade-off exists between the 
identification and tracking of a target which is coupled to 
the classifier. 

In the case of multiple ATR systems observing the same 
area, the HRR profiles can be at significantly different 
geometries meaning that the features associated with a 
target will differ for each ATR.  In such a case a decision- 
level fusion approach is good solution since the ATR 
decisions are fused and not the features of the target 
signatures. If however; a single sensor is observing a 
target over time, the HRR profiles will be closely 
associated in aspect and the target features can be fused 
from multiple looks (feature-level fusion) for an enhanced 
profile that may then be used for track maintenance or 
target ID. By leveraging knowledge about target types, 
fusion algorithms can significantly reduce processing time 
for tracking and identifying targets. 
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4.1 Decision Level Fusion (DLF) Method 
The decisions from an ATR are often stored in a 

confusion matrix which is an estimate of likelihoods. For 
the single-look ATR performance these estimates are 
treated as priors. The decision level fusion technique 
presented here uses the decision c1j from ATR-1 as a priori 
performance estimate and the decisions from multiple 
ATRs or multiple geometries for a single ATR c2k, c3k, c4k, 
… c n k to declare Ti the target if it is determined to be the 
most reliable decision. 

A single target ID is declared by fusing all previous 
looks with the current n-look to obtain an optimal result.  
The DLF technique estimates the probability 

 P(Ti | c1j , c2k, c3k, c4k, … c n k ) ,        ∀ i, j, and k.   (8)  

where c1j indicates that ATR-1 declares target j, c2k is the 
declaration of target k by ATR-2, c3k  means ATR-3 called 
target k, and c n k means ATR n made target call k. The 
probability that target i is present given n declarations 
have occurred is given by P(Ti | c1j, c2k, c3k, c4k, … c n k ).  
Eq. 8 can be written using Bayes’ Theorem as 

 P(Ti | c1j, c2k, c3k, c4k, … c n k )  (9) 

            = 
∑i iinkkkkj

iinkkkkj

TPTcccccP
TPTcccccP

)()|,...,,,(
)()|,...,,,(

4321

4321    

for all i, j, k, and n decisions. Eq. 9 can be simplified 
assuming that the prior probabilities P(Ti) are all equal to  

 P(Ti| c1j,c2k,c3k,c4k,…c n k) = (10) 

             
∑i inkkkkj

inkkkkj

TcccccP
TcccccP

)|,...,,,(
)|,...,,,(

4321

4321   

for all i, j, k, and n decisions.  Assuming that ATR 1 
through ATR n provide independent identification 
declarations, the joint probabilities in Eq. 10 can be 
factored to 

 P(Ti| c1j, c2k, c3k, c4k,…c n k) =  (11) 

 
∑i inkikikikij

inkikikikij

TcPTcPTcPTcPTcP
TcPTcPTcPTcPTcP

)|()...|()|()|()|(
)|()...|()|()|()|(

4321

4321  

for all i, j, k, and n decisions.  Now the right side of Eq. 11 
is in terms of the entries of the ATR-1 confusion matrix 
and each index of the matrix represents a probability of 
identification for the given target (rows) versus the 
declared target (column). Let d(j, k) represent the fusion 
algorithm declaration given that ATR-1 declares target j 
and ATR-2 through ATR-n declares target k where d(j, k) 
= Tm, where m = max{P(Ti | c1j, c2k, c3k, c4k, … c n k)}. The 
highest probability is declared the target after computing 
the probability of target i for all target declarations.   

Assuming independence, the decision level fusion [41] 
performance is predicted by estimating, for each target of 
interest Ti, the frequency with which the ATR 1 algorithm 
makes the declarations j and k, and assigning from Eq. 11 

the appropriate declaration Tm. The frequency that Tj is 
declared can be computed for each Ti resulting in a 
performance estimate for the decision level fusion 
algorithm in the form of a confusion matrix [42].  

P(c1j, c2k, c3k, c4k, … c n k | T i) (12) 

        = P(c1j| T i) P(c2k| T i) P(c3k| T i) … P(c n k| T i) 

for all i, j, k, and n looks. 
For a large number of looks, the cumulative approach 

becomes computationally intense and although an optimal 
decision will result, the computational burden is excessive 
and timely decisions unlikely.  Therefore, the technique is 
simplified to use the decisions from two ATR’s with the 
resulting fused output being treated as a prior and 
sequentially incorporating each new ATR decision.    
  For example, if only two ATR’s decisions c1j indicating 
ATR-1 declared target j and c2k indicating that ATR-2 
declared target k are used, Eq. 11 reduces to  

  P(Ti | c1j,c2k)  = 
∑i ikij

ikij

TcPTcP
TcPTcP

)|()|(
)|()|(

21

21  (13) 

for all i, j, and k.   
Determining the highest probability the fusion algorithm 

makes a target declaration d.  The fused result replaces the 
ATR-1 decision, c1j in Eq. 13.  Another ATR decision 
represented by c3k replaces ATR 2, giving  
 

 P(Ti|d1j,c3k)= 
∑i ikij

ikij

TcPTdP
TcPTdP

)|()|(
)|()|(

31

31  (14) 

for all i, j, and k. 
Once again the highest probability is determined and a 

sequentially fused declaration is made, d2j. This process is 
iteratively applied for each additional ATR decision and in 
general can be written as 

 P(Ti| d o j, c n k) = 
∑i inkioj

inkioj

TcPTdP
TcPTdP

)|()|(
)|()|(   (15) 

 
for all i, j, and k.  Where d o j represents the oth fused 
decision declaring target j and c n k is ATR n declaring 
target k. This technique reduces the decision level fusion 
implementation to an operation between two confusion 
matrices regardless of the number of looks involved. 

4.2 Feature Level Fusion (FLF) Method 
As discussed previously, the baseline ATR algorithm 

(BART) employs an Eigen-template formation method via 
SVD. For a 1–D HRR profile, the template formation 
process combines the features from a range-angle map of 
training data covering for example 5 degrees in azimuth.  
A logical extension of this technique is to adapt it for 1-D 
profile feature fusion for multi-look identification of 
moving ground vehicles.  In tracking and ID applications a 
series of looks at a target that are closely associated in 
aspect can have the features of the signatures fused 
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together to reduce noise and the influence of outliers in 
any single profile. The fusion process for 1-D HRR 
profiles would closely emulate the template formation 
process presented in the literature by forming a range-
angle map of n-looks at a target and performing an SVD 
operation on the data to obtain the dominant eigenvector 
that has been shown [21,29-31] to contain the majority of 
the target energy.  The eigen vector (EV) method has been 
shown to work for normalized HRR profiles with and 
without a power transform and the approach used for 
template formation is reproduced below but for multi-look 
1-D HRR profiles at closely associated aspect angles with 
the goal to produce a fused multi-look test profile. 

First, 1-D HRR profiles are sorted by estimated azimuth 
from n-looks to create a range-angle map, X ∈ ℜ 

m × n
, of 

m range bins by n aspect angles.  This matrix is 
decomposed via SVD into three corresponding orthogonal 
basis spaces shown in Eq 16. 

 X SVD⎯→ U Λ V 
T
 = ∑

i = 1

 n
   λ i u i v i 

T
  (16) 

where the range space contains the left eigen vectors to be 
used as features in the multi-look ID process are 
represented by 

• Range-Space:  

   U  =  EV[XX
T
]  =  [u1, …, u m] ∈ ℜ 

m
    (17) 

 
which is the expected value of range sequences. The angle 
space or right eigen vectors are discard in this process but 
are represented as 
 
• Angle-Space:  

      V  = EV[ X
 T

 X] =  [v 1, …, v n] ∈ ℜ 
 n
    (18) 

  
and the singular values are given by 
                                   
• Singular Values : 

    Λ  = Diag[ λ11, …, λ n n ]  ∈ ℜ 
n
  (19) 

Where, EV[…] represents the operation “Eigen-Vectors 
of” U an V in Eq 17 and Eq 18. For Range Vs. Angle 
HRR data, the range and angle sub-spaces are decoupled 
via SVD into the left eigen vectors (U) that span the 
orthogonal basis space in the range domain while the right 
eigen vectors (V) span the angle space. Λ is diagonal 
containing n (m > n is assumed here) singular values in 
decreasing order, λ 11 ≥ λ 22 ≥ … ≥ λ nn , where λ ii denotes 
the weights associated with i-th eigenvector and λ11 is the 
largest singular value and implies a significant amount of 
profile energy contributed to the particular eigen-vector. 
Hence these are denoted as “signal subspace” eigenvectors 
whereas those corresponding to the smaller singular 
values are denoted as “noise or clutter subspace”. The 
primary goal of this work is to exploit the information 

contained in the decoupled range basis space vectors in U 
to perform the effective ATR.  The fused multi-look HRR 
profile is contained in u1 of Eq 17. 
      The Log-likelihood of the Eigen method is given by 

L(f k | T i) =  − 
1
2 Log(N0) − ∑

n = 1

 N

  
[ f
−

 k (n) − μ i k (n)]
2

 N0
 (20)  

 

where      f
−

 k (n)  =  f k (n) / ∑
n = 1

 N

  f k (n)  (21) 

The amplitude-location features f k (n) are estimated 
through the SVD approach where the HRR test profiles 
matrix X i are formed by the column vectors of x d that 
correspond to the features 

           X i  =  [x d] d ∈ T t 
 SVD⎯→ U Λ V 

T
        (22) 

where {f k (n)} =  {u 1(n)} and  f k (n) is found as the left 
singular vector of X i corresponding to the greatest 
singular value. 
 
5 Results 

The results presented in this section used measured data 
processed into 1-D HRR profiles from a scenario where 
ten ground vehicles were traveling in the open along a 
roadway under benign conditions. Single look 
performance of the BART algorithm was generated from 
all available data to gage relative improvement gains using 
the fusion techniques described earlier.  The DLF 
technique was used with five confusion matrices each 
produced with a unique sample set from the HRR data 
base by the BART algorithm.  The eigenvector feature 
level multi-look fusion technique was use to generate a 
database of test profiles for a 5-look scenario.  The results 
of these experiments are presented in the sections that 
follow. 

5.1 BART Single-Look Performance 
To generate the single look baseline ATR performance ten 
trials were generated, leaving out one of the targets in the  

 
Figure 3. Single-Look Performance 

594



library for each test, commonly called the Leave-One-Out-
Method (LOOM). The results of all ten trials were 
combined to produce the average performance for all 
targets and an out-of-library confusing target shown in 
Figure 3.   

For the most part the single look performance is very 
reasonable with the lone exception being target 3 in the 
confusion matrix.  The distribution of the out-of-library 
target was uniformly confused across the entire BART 
algorithm library indicating that no bias toward a library 
object was present. 

5.2 DLF Multi-look Performance 
To create the DLF performance in the confusion matrix 

shown in Figure 4 below, the HRR profile test data was 
divided by sorting the data in azimuth and taking every 
fifth sample to create 5 unique data sets.  For each data set 
ten trials were run with one of the library targets removed 
to simulate a confusing target.  The data from all ten trials 
was combined to create an average performance confusion 
matrix for each unique data set (look), five in all. 

 
Figure 4. Decision Level Fusion Performance: 5 Looks 

  The DLF algorithm was first run on looks one and two 
with the remaining looks being added sequentially and the 
fused decision from the previous run being treated as prior 
knowledge of the targets of interest.  

A significant performance gain is observed from these 
trials with target 3 achieving very high identification 
performance with respect to the baseline results.  The off 
diagonal target confusion was significantly reduced 
relative to the other methods (Baseline and FLF). 

5.3  FLF Multi-look Performance 
  The results presented in Figure 5 are of five consecutive 
looks at a target fused into a single profile. The FLF 
profile was then tested against the BART library. Ten 
trials were conducted where a target in the library was 
removed for each trial and treated as a confuser like in the 
single-look performance tests. The results from all trials 
were combined to create the average performance for all 
in-library and out-of-library targets.  

 
Figure 5.  Feature Level Fusion Performance: 5 Looks 

Although still the poorest performing target, Target 3 
identification performance has improved using the FLF 
technique over the single look baseline results. 

Finally, a set of metric comparisons, as defined in 
Section 3, are shown in Figure 6, where the first bar is the 
single-look case and the second bar is the multi-look case, 
presented over the ten target types. From this example, not 
every case of multi-look improves individual target 
recognition, but in general there is improvement.  

 
Figure 6.  Multi-Look to Single-Look Comparisons. 

6 Discussion & Conclusions 
Both multi-look fusion techniques improved target 

identification performance in comparison to the baseline 
single-look ATR results. The five look performance of the 
FLF algorithm more closely resembled the baseline 
results. The DLF algorithm performed extremely well for 
the data set under test showing significant performance 
gains over both the baseline and feature level fusion 
algorithms.  Evidence of the robust nature of the DLF 
approach can be found in the enhanced identification 
performance of Target 3 where both the baseline and FLF 
methods demonstrated similar but much lower target 
recognition probability caused by algorithm sensitivities to 
the greater percentage of extended operating conditions 
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present in the Target 3 data relative to the other nine 
targets in the data set.  

Conventional measurement tracking techniques have 
difficulty with data association when position 
measurements are close. To further assess simultaneous 
tracking and ID algorithms, it is important to have a 
defined Challenge Problem set for comparison. We have 
presented the BART approach utilizing the Eigen ATR 
method provided a confusion matrix. While experiments 
are on-going to improve the HRR performance model 
robustness, some defined challenges (for sensitivity 
analysis) include (1) determining the performance over 
aspects, a set of window aspects, and aspect diversity, (2) 
varying the class size and mix of target types, (3) compare 
fusion methods and classifier approaches and mixes of 
both, and (4) developing different collection geometries to 
be included in a dynamic sensor manager utilization.  
Together, these experiments will lead to a robust 
understanding of fusion performance evaluation and the 
methodology can be extended to other data sets. 
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